Main menu

4. Β΄Λυκείου/ Κατεύθυνση/ Ευθεία

Αξιολόγηση Χρήστη: 0 / 5

Αστέρια ΑνενεργάΑστέρια ΑνενεργάΑστέρια ΑνενεργάΑστέρια ΑνενεργάΑστέρια Ανενεργά

Δίνεται η ευθεία   varepsilon :{left( {alpha  - beta } right)^2}x + left( {alpha  - beta } right)y + beta  - alpha  = 0 

Α.   Να αποδειχτεί ότι η ε έχει συντελεστή διεύθυνσης για κάθε δυνατή τιμή των

       πραγματικών α, β

Β.   Να αποδειχτεί ότι η ε διέρχεται από σταθερό σημείο, για κάθε δυνατή τιμή των

       πραγματικών α, β

Γ.   Να αποδειχτεί ότι η απόσταση της αρχής των αξόνων από την ε είναι  d = frac{1}{{sqrt {{{left( {alpha  - beta } right)}^2} + 1} }}    

Δ.   Να βρεθεί η εξίσωση της ε αν απέχει από την αρχή των αξόνων  frac{1}{{sqrt 2 }}

 

3. Β΄Λυκείου/ Κατεύθυνση/ Ευθεία

Αξιολόγηση Χρήστη: 5 / 5

Αστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια Ενεργά

Δίνεται η ευθεία   varepsilon :left( {{mu ^2} - mu } right)x + left( {{mu ^2} + 3mu  - 4} right)y - 4mu  + 4 = 0,,,,mu  in R

Α.   Να αποδειχτεί ότι  mu  in R - left{ 1 right} .

Β.   Να δειχτεί ότι η ευθεία  varepsilon  διέρχεται από σταθερό σημείο Κ για κάθε  mu  ne 1.

Γ.   Να αποδειχτεί ότι  dleft( {{rm O},varepsilon } right) = frac{4}{{sqrt {{mu ^2} + {{left( {mu  + 4} right)}^2}} }} , όπου Ο η αρχή των αξόνων.

Δ.   Να αποδειχτεί ότι για κάθε  mu  ne 1:,,,dleft( {{rm O},varepsilon } right) le ({rm O}{rm K}) .

2. Β΄ Λυκείου/ Κατεύθυνση/ Ευθεία

Αξιολόγηση Χρήστη: 0 / 5

Αστέρια ΑνενεργάΑστέρια ΑνενεργάΑστέρια ΑνενεργάΑστέρια ΑνενεργάΑστέρια Ανενεργά

Δίνονται τα μη μηδενικά διανύσματα  vec alpha ,vec beta   με vec alpha  bot vec beta  και η ευθεία

varepsilon :left( {sigma upsilon nu left( {vec alpha ,,,vec alpha  + vec beta } right)} right) cdot x - left( {sigma upsilon nu left( {vec alpha ,,,vec alpha  - vec beta } right)} right) cdot y + frac{{left| {vec beta } right|}}{{left| {vec alpha } right|}} = 0

Α.   Να δειχτεί ότι:  sigma upsilon nu left( {vec alpha ,,,,vec alpha  + vec beta } right) = frac{{left| {vec alpha } right|}}{{left| {vec alpha  + vec beta } right|}}

Β.   Να δειχτεί ότι η γωνία που σχηματίζει η ευθεία ε με τον x'x  είναι  45o.

Γ.   Να βρεθούν τα σημεία τομής Α, Β της ευθείας ε με τους άξονες x'x και y'y αντίστοιχα.

Δ.   Να δειχτεί ότι το εμβαδό του τριγώνου ΟΑΒ (Ο η αρχή των αξόνων) ισούται με

      {rm E} = frac{1}{2},,frac{{{{left| {vec beta } right|}^2}}}{{{{left| {vec alpha } right|}^2}}},left( {1 + frac{{{{left| {vec beta } right|}^2}}}{{{{left| {vec alpha } right|}^2}}}} right).

Ε.   Αν  E=1  να αποδειχτεί ότι  left| {vec alpha } right| = left| {vec beta } right|

1. Β΄ Λυκείου/ Κατεύθυνση/ Ευθεία

Αξιολόγηση Χρήστη: 5 / 5

Αστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια Ενεργά

Δίνεται η εξίσωση  {y^2} - 2alpha xy = {x^2}.

A. Να δειχτεί ότι παριστάνει δύο κάθετες ευθείες για κάθε  alpha  in mathbb{R}.

Β. Αν  Α, Β τα σημεία τομής της ευθείας  varepsilon :x = 1 με τις παραπἀνω ευθείες

      1. Να υπολογιστεί ο  alpha   αν  left( {{rm A}{rm B}} right) = 2

      2. Να υπολογιστεί ο  alpha   αν το τρίγωνο  ΟΑΒ έχει εμβαδό  1 τ.μ. ( Ο η αρχή των αξόνων )