eMath:a eMath:a
eMath:a eMath:a
  • Αρχική
  • Α Λυκείου
    • Θεωρία Συνόλων
    • Πιθανότητες
    • Πραγματικοί Αριθμοί
    • Εξισώσεις
    • Ανισώσεις
    • Πρόοδοι
    • Συναρτήσεις - Βασικές Έννοιες
    • Μελέτη Βασικών Συναρτήσεων
    • Επαναληπτικές
  • Β Λυκείου
    • Γενική
      • Συστήματα
      • Συναρτήσεις
      • Τριγωνομετρία
      • Πολυώνυμα
      • Εκθετική & Λογαριθμική
      • Επαναληπτικές
    • Κατεύθυνση
      • Διανύσματα
      • Ευθεία
      • Κύκλος
      • Παραβολή Έλλειψη Υπερβολή
      • Επαναληπτικές
  • Γ Λυκείου
    • Γενική
      • Συναρτήσεις
      • Στατιστική
      • Πιθανότητες
      • Επαναληπτικές
    • Κατεύθυνση
      • Μιγαδικοί
      • Συναρτήσεις Βασικά
      • Όριο - Συνέχεια
      • Παράγωγος Βασικά
      • Θεωρήματα Παραγώγων
      • Ολοκληρώματα
      • Επαναληπτικές
  • Geogebra
    • Α Λυκείου
    • Β Λυκείου Γενικής
    • Β Λυκείου Κατεύθυνσης
    • Γ Λυκείου Γενικής
    • Γ Λυκείου Κατεύθυνσης
  • Επικοινωνία

2. Β΄ Λυκείου/ Γενικής/ Τριγωνομετρία

Τριγωνομετρία 08 Δεκέμβριος 2012

Δίνεται η συνάρτηση  fleft( x right) = 2 - 4eta {mu ^2}frac{{pi x}}{2},,,x in R.

Α.   Να δείξετε ότι  fleft( x right) ge  - 2,,,forall x in R.

Β.   Να βρεθούν τα x in R  στα οποία η  f  παρουσιάζει ελάχιστη τιμή

      καθώς και η ελάχιστη τιμή της.

Γ.   Λύστε την ανίσωση  {f^2}left( x right) + fleft( x right) ge 6.

1. Β΄ Λυκείου/ Γενικής/ Τριγωνομετρία

Τριγωνομετρία 05 Δεκέμβριος 2012

Δίνεται η συνάρτηση  fleft( x right) = eta mu x cdot sigma upsilon nu x,,,,forall x in R 

Α.   Να δειχτεί ότι: fleft( x right) = {left( {frac{{eta mu x}}{{sqrt 2 }} + frac{{sigma upsilon nu x}}{{sqrt 2 }}} right)^2} - frac{1}{2} = frac{1}{2} - {left( {frac{{eta mu x}}{{sqrt 2 }} - frac{{sigma upsilon nu x}}{{sqrt 2 }}} right)^2}.

B.   Να μελετηθεί η μονοτονία της  f  στο left[ { - frac{pi }{4},0} right].

Γ.   Να δειχτεί ότι  max f = frac{1}{2}, και  min f =  - frac{1}{2}.

Δ.   Να δειχτεί ότι:   - sqrt 2  le eta mu x + sigma upsilon nu x le sqrt 2  , για κάθε  forall x in R

  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
Σελίδα 45 από 45

Καλώς Ήλθατε

Εδώ θα βρείτε προτεινόμενα θέματα μαθηματικών για όλες τις τάξεις του γενικού λυκείου.

Τα θέματα είναι προϊόν πνευματικής εργασίας του Αυτή η διεύθυνση Email προστατεύεται από τους αυτοματισμούς αποστολέων ανεπιθύμητων μηνυμάτων. Χρειάζεται να ενεργοποιήσετε τη JavaScript για να μπορέσετε να τη δείτε. και Αυτή η διεύθυνση Email προστατεύεται από τους αυτοματισμούς αποστολέων ανεπιθύμητων μηνυμάτων. Χρειάζεται να ενεργοποιήσετε τη JavaScript για να μπορέσετε να τη δείτε. και φιλοδοξούν να είναι πρωτότυπα και χρήσιμα.

Μπορείτε να τα χρησιμοποιήσετε ελεύθερα ή να παράξετε νέα θέματα στηριζόμενα σε αυτά αναφέροντας τους δημιουργούς τους.

Στη περίπτωση δημοσίευσης τους σε ιστοσελίδα ή άλλο ηλεκτρονικό μέσο να συμπεριλαμβάνεται επιπλέον και σύνδεσμος στον ιστότοπο

https://ematha.vassiliadis.edu.gr

Δεν επιτρέπεται όμως σε καμμία περίπτωση η εμπορική τους εκμετάλλευση με οποιονδήποτε τρόπο.

Creative Commons License

Αυτό έργο χορηγείται με άδεια

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.

Εκπαιδευτήρια Βασιλειάδη
© 2023 Μούτσιος Γρηγόριος - Παρίσης Γεώργιος. Designed By TimeSilence
eMath:a eMath:a
  • Αρχική
  • Α Λυκείου
    • Θεωρία Συνόλων
    • Πιθανότητες
    • Πραγματικοί Αριθμοί
    • Εξισώσεις
    • Ανισώσεις
    • Πρόοδοι
    • Συναρτήσεις - Βασικές Έννοιες
    • Μελέτη Βασικών Συναρτήσεων
    • Επαναληπτικές
  • Β Λυκείου
    • Γενική
      • Συστήματα
      • Συναρτήσεις
      • Τριγωνομετρία
      • Πολυώνυμα
      • Εκθετική & Λογαριθμική
      • Επαναληπτικές
    • Κατεύθυνση
      • Διανύσματα
      • Ευθεία
      • Κύκλος
      • Παραβολή Έλλειψη Υπερβολή
      • Επαναληπτικές
  • Γ Λυκείου
    • Γενική
      • Συναρτήσεις
      • Στατιστική
      • Πιθανότητες
      • Επαναληπτικές
    • Κατεύθυνση
      • Μιγαδικοί
      • Συναρτήσεις Βασικά
      • Όριο - Συνέχεια
      • Παράγωγος Βασικά
      • Θεωρήματα Παραγώγων
      • Ολοκληρώματα
      • Επαναληπτικές
  • Geogebra
    • Α Λυκείου
    • Β Λυκείου Γενικής
    • Β Λυκείου Κατεύθυνσης
    • Γ Λυκείου Γενικής
    • Γ Λυκείου Κατεύθυνσης
  • Επικοινωνία